1. 数学小知识竞答
数学小知识竞答 1.数学趣味小知识 简短的 20到50字左右
趣味数学小知识
数论部分:
1、没有最大的质数。欧几里得给出了优美而简单的证明。
2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。
3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
拓扑学部分:
1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。
2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。
3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,
摘自:/bbs2/ThreadDetailx?id=31900
2.小学数学知识集锦
小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。
(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。
(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。
(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。
3.关于数学的小知识
数学小知识--------------------------------------------------------------------------------
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"*",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"*"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到 *** 论中去了。
到了十八世纪,美国数学家欧德莱确定,把"*"作为乘号。他认为"*"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造
4.各种知识竞赛题语文、数学、科学、历史、地理、音乐等方面的知识竞
一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且仅有一个选项是正确的。 请将正确选项的代号填入题后的括号里。
不填、多填或错填都得0分) 1。在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪。
刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ) (A)36 (B)37 (C)55 (D)90 2。已知,,且,则a的值等于( ) (A)-5 (B)5 (C)-9 (D)9 3。
Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴。 若斜边上的高为h,则( ) (A)h2 4。
一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( ) (A)2004 (B)2005 (C)2006 (D)2007 5。 如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q,若QP=QO,则的值为( ) (A) (B) (C) (D) 二、填空题(共5小题,每小题6分,满分30分) 6。
已知a,b,c为整数,且a+b=2006,c-a=2005。 若a0. …………………10分 另外,当a=b时,由⑤式有, 即,或,解得,或. 所以,a的取值范围为且,.……………15分 13。
证明:因为AC∥PB,所以∠KPE=∠ACE。又PA是⊙O的切线,所以∠KAP=∠ACE.故∠KPE=∠KAP,于是△KPE∽△KAP,所以,即KP2=KE·KA.……………5分 由切割线定理,得KB2=KE·KA,所以,KP=KB. …………………10分 因为AC∥PB,所以,△KPE∽△ACE,于是,故,即PE·AC=CE·KB. …………………15分 14。
解:首先证明命题:对于任意119个正整数b1,b2,…,b119,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数. 事实上,考虑如下119个正整数b1,b1 b2,…,b1 b2 … b119, ① 若①中有一个是119的倍数,则结论成立. 若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所以,其中一定有两个除以119的余数相同,不妨设为b1 … bi和(1≤i。
5.有关数学的小知识
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?一、重视课内听讲,课后及时进行复习.新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.二、多做习题,养成解决问题的好习惯.如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.三、调整心态并正确对待考试.首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去。
6.数学小知识
这是一个有趣的数学常识,做数学报用上它也很不错。
人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。
还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。
于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了 *** 论,很快渗透到大部分数学分支,成为它们的基础。
到十九世纪末,全部数学几乎都建立在 *** 论的基础上了。就在这时, *** 论接连出现了一系列自相矛盾的结果。
特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”
公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。
类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”
意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。
上一句话是真话。 更有趣的是下面的对话。
甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。
一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2. *** 数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。
现在, *** 数字已成了全世界通用的数字符号。
(背
)
水一战
袖(手
)
旁
观
孤
(掌
)
难
鸣
屈(指
)可
数
(胸
)
有
成
竹
(腰
)缠
万
贯
得(心
)应(手
)
牵(肠
)挂(肚
)
(胆
)大(心
)细
3、下面的古诗句中,每句都有一个动物名,请你写出来。(8分)
柴门闻(犬
)吠
千山(鸟
)飞绝
射人先射(马
)
早有(蜻蜓
)立上头
添得(
)四五声
一行(白鹭
)上青天
故人西辞(黄鹤
)楼
怕得(
)惊不应人
4、古诗词中有许多叠词,你能帮它们找到各自的家吗?(10分)
悠悠
萧萧
滚滚
纷纷
微微
两两
时时
恰恰
家家
处处
A、念天地之(悠悠
),独怆然而涕下。
B、无边落木(萧萧
)下,不尽长江(滚滚
)来。
C、清明时节雨(
纷纷),路上行人欲断魂。
D、(微微
)风簇浪,散作满河星。
E、夕阳牛背无人卧,带得寒鸦(两两
)归。
恰恰
)啼。
G、黄梅时节(家家
)雨,青草池塘(处处
)蛙。
先做这些,没时间了
本文来自作者[韶华倾负]投稿,不代表木木号立场,如若转载,请注明出处:https://www.gmx3.cn/ef/%E6%95%B0%E5%AD%A6%E5%B0%8F%E7%9F%A5%E8%AF%86%E4%B8%80%E9%97%AE%E4%B8%80%E7%AD%94.html
评论列表(4条)
我是木木号的签约作者“韶华倾负”!
希望本篇文章《数学小知识一问一答》能对你有所帮助!
本站[木木号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:1. 数学小知识竞答 数学小知识竞答 1.数学趣味小知识 简短的 20到50字左右 趣味数学小知识 数论部分: 1、没有最大的质数。欧几里得给出了优美而简单的证明。2、哥...